
Chapter 7

PERIODIC FUNCTIONS
A function f(x) is said to have a period T or to be periodic with period T if for all x,

f(x + T)- f(x), where T is a positive constant. The least value of T > 0 is called the
least period or simply the period of /(#).

Example 1. The function sin x has periods 2ir, 4v, &¡r, ..., since sin (x + 2v), sin (x + 4s-), sin (* + 6n-),
... all equal sin x. However, 2ir is the least period or the period of sin x.

Example 2. The period of sin nx or cos nx, where M is a positive integer, is 2ir/n.

Example 3. The period of tan x is ir.

Example 4. A constant has any positive number as period.

Other examples of periodic functions are shown in the graphs of Figures 7-l(a), (b)
and (c) below.

Fig. 7-1

FOURIER SERIES
Let f(x) be defined in the interval (—L, L) and outside of this interval by f(x + 2L) = f(x),

i.e. assume that f(x) has the period 2L. The Fourier series or Fourier expansion corre-
sponding to f(x) is given by

(1)

where the Fourier coefficients an and bn are

(2)

If f(x) has the period 2L, the coefficients an and bn can be determined equivalently
from

(3)

where c is any real number. In the special case c = —L, (3) becomes (2).
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Fourier Series
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To determine a0 in (1), we use (2) or (3) with n - 0. For example, from (2) we

see t h a t f ( x ) d x . Note that the constant term in (1) is equal to =

/(a;) àx, which is the mean of f(x) over a period.

If L = r, the series (1) and the coefficients (2) or (3) are particularly simple. The
function in this case has the period 2-*.

DIRICHLET CONDITIONS
Theorem 7-1. Suppose that

(1) f(x) is defined and single-valued except possibly at a finite number of
points in (—L,L)

(2) f(x) is periodic outside (—L,L) with period 2L

(3) f(x) and f'(x) are piecewise continuous in (—L,L).

Then the series (1) with coefficients (2) or (3) converges to

(a) f(x) if a; is a point of continuity

(6) if z is a point of discontinuity

In this theorem f(x + 0) and f(x — 0) are the right and left hand limits of f(x) at x and
represent lim f(x + £) and lim f(x — e) respectively where e > 0. These are often written

£-*0 e-»0
lim f(x + e) and lim f i x — <•) to emphasize that « is approaching zero through positive

e-»0+ e-»0 +
values. For a proof see Problems 7.18-7.23.

The conditions (1), (2) and (3) imposed on f(x) are sufficient but not necessary, and
are generally satisfied in practice. There are at present no known necessary and sufficient
conditions for convergence of Fourier series. It is of interest that continuity of f(x) does
not alone insure convergence of a Fourier series.

ODD AND EVEN FUNCTIONS

A function f(x) is called odd if /(—*) = —/(«)• Thus x3, x5 — Sx3 + 2x, sin x, tan 3a;
are odd functions.

A function f(x) is called even if f(—x) = f(x). Thus x4, 2x6 — 4a;2+ 5, cosa;, ex + e~x

are even functions.
The functions portrayed graphically in Figures 7-l(a) and 7-1(6) are odd and even

respectively, but that of Fig. 7-1 (c) is neither odd nor even.
In the Fourier series corresponding to an odd function, only sine terms can be

present. In the Fourier series corresponding to an even function, only cosine terms (and
possibly a constant which we shall consider a cosine term) can be present.

HALF RANGE FOURIER SINE OR COSINE SERIES

A half range Fourier sine or cosine series is a series in which only sine terms or
only cosine terms are present respectively. When a half range series corresponding to
a given function is desired, the function is generally defined in the interval (0, L) [which
is half of the interval (-L,L), thus accounting for the name half range] and then the
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function is specified as odd or even, so that it is clearly defined in the other half of the
interval, namely (-L, 0). In such case, we have

for half range sine series
(4)

for half range cosine series

PARSEVAL'S IDENTITY states that

(5)

if an and bn are the Fourier coefficients corresponding to f(x) and if f(x) satisfies the Dirichlet
conditions.

DIFFERENTIATION AND INTEGRATION OF FOURIER SERIES
Differentiation and integration of Fourier series can be justified by using the theorems

on page 7 which hold for series in general. It must be emphasized, however, that those
theorems provide sufficient conditions and are not necessary. The following theorem for
integration is especially useful.

Theorem 7-2. The Fourier series corresponding to f(x) may be integrated term by term

from a to x, and the resulting series will converge uniformly to f(u) du

provided that f(x) is piecewise continuous in — L ê x a L and both a and x
are in this interval.

COMPLEX NOTATION FOR FOURIER SERIES
Using Euler's identities,

e*» = cos 0 + i sin O, e~u = cos 9 - i sin e (6)

where i = [see Problem 1.61, page 30], the Fourier series for f(x) can be written as

where c» = (8)

In writing the equality (7), we are supposing that the Dirichlet conditions are satisfied
and further that f(x) is continuous at x. If f(x) is discontinuous at x, the left side of (7)

should be replaced by

ORTHOGONAL FUNCTIONS

Two vectors A and B are called orthogonal (perpendicular) if A • B = 0 or AiBi +
AzBz + A3B3 = 0, where A = AJ + A2j + Aak and B = BA + B2j + #sk. Although not geo-
metrically or physically evident, these ideas can be generalized to include vectors with

( 7 )
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more than three components. In particular we can think of a function, say A(x), as being a
vector with an infinity of components (i.e. an infinite dimensional vector), the value of each
component being specified by substituting a particular value of x in some interval (a, b).
It is natural in such case to define two functions, A(x) and B(x), as orthogonal in (a, b) if

(9)

A vector A is called a unit vector or normalized vector if its magnitude is unity, i.e.
if A-A = A2 = 1. Extending the concept, we say that the function A(x) is normal or
normalized in (a, b) if

(10)

From the above it is clear that we can consider a set of functions {</>fc(*)}, k = 1,2,3,...,
having the properties

(11)

(12)

In such case, each member of the set is orthogonal to every other member of the set and
is also normalized. We call such a set of functions an orthonormal set in (a, b).

The equations (11) and (12) can be summarized by writing

(13)

where 8mn, called Kronecker's symbol, is defined as 0 if m ¥* n and 1 if m = n.

Just as any vector r in 3 dimensions can be expanded in a set of mutually orthogonal
unit vectors i, j, k in the form r = di + Caj + c3k, so we consider the possibility of expanding
a function f(x) in a set of orthonormal functions, i.e.,

(U)

Such series, called orthonormal series, are generalizations of Fourier series and are of great
interest and utility both from theoretical and applied viewpoints.

If (15)

where w(x) ê 0, we often say that $m(x) and qn(x) are orthonormal with respect to the
density function or weight function w(x). In such case the set of functions is
an orthonormal set in (a, 6).
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Solved Problems
FOURIER SERIES
7.1. Graph each of the following functions.

(a) f(x) = Period = 10

Fig. 7-2

Since the period is 10, that portion of the graph in — 5 < « < 5 (indicated heavy in Fig. 7-2
above) is extended periodically outside this range (indicated dashed). Note that /(*) is not
defined at x = 0,5, —5,10, —10,15, —15, etc. These values are the discontinuities of f(x).

(6) f(x) = Period = 2*

Fig. 7-3

Refer to Fig. 7-3 above. Note that /(«) is defined for all x and is continuous everywhere.

(c) f(x) = Period = 6

Fig. 7-4

Refer to Fig. 7-4 above. Note that /(*) is defined for all x and is discontinuous at x = ±2,
±4, ±8, ±10, ±14,

7.2. Prove
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_. , . CL mirx n-Trx , CL • wivx • n-^x ,7.3. Prove (a) I cos -^^- cos —f- dx = \ sin—=^ sin-7-da =J-L L L J-L L LI

(b) c si
J-L

*L m-vx n-n-x , CL • m*x . n-nx , J O m ¥° ncos^f^cos—f-dx = \ sin—=^ sin-7-da = •{ r-L L L J-L L LI \Lm-n
L . m-irX n-irX , f .sm^f—cos—j^dx — 0LI LI

where m and n can assume any of the values 1,2,3,... .

(a) From trigonometry: cos A cos B = ^{cos (A—B) + cos (A + B)}, sin A sin B = ^{cos (A — B) —
cos(A+B)}.

Then, if m ¥* n, we have by Problem 7.2,

J 

L mirx mrx , Í CL } (m — ri)vx . (m + n)vx\, ncos—^cos-^iZa; = 7; I •{ cos- =-* h cos^ ~—> dx = 0, Li Li ¿ J . \ Li L I
— Lt lj \. s

y if m ¥* n,

J'*ç*ç* .!/'{.
— LJ Ll \,

Similarly if m ¥* n,

(m — n)vx (m + rilirx , .
cos- j-1 cos^ f-1— Y dx = 0LI LI

If m — n, we have

/

L mirx nvx , 1 CL /., . 2nvx
cos —-f— cos -7— dx = -^ I 1 + cos -

-L L Li 2 J-L V 

dx = L

2nirx\ , ,cos —=— I dx — LL I

L

CL . rmrx . nvx, 1 CL LI sin —f— sin —=— dx = -¿ I I 1 —
-'-L L L 2J-L V

Note that if m = n = 0 these integrals are equal to 2L and 0 respectively.

(6) We have sin A cos B = £{sin (A - B) + sin (A +B)}. Then by Problem 7.2, if m¥*n,

If m — n,

The results of parts (a) and (6) remain valid even when the limits of integration —L,L are
replaced by c, c + 2L respectively.

°o f Vitr'Y 'Mir'ï*\
7.4. If the series A + 2J ( a» cos —j- + bn sin -=r- ) converges uniformly to f(x) in (-L, L),

n=l \ Li Lt /
show that for n = 1,2,3, ... ,

(a) Multiplying /(«) = A + 2 fa

by cos m?x and integrating from — L to L, using Problem 7.3, we haveLI

Thuss

(1)

(2))
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(6) Multiplying (Í) by sin and integrating from -L to L, using Problem 7.3, we have

Thus

(c) Integration of (1) from — L to L, using Problem 7.2, gives

Putting m = 0 in the result of part (a), we find a0 = f(x) dx and so

The above results also hold when the integration limits — L, L are replaced by c,c + 2L.
Note that in all parts above, interchange of summation and integration is valid because the

series is assumed to converge uniformly to f(x) in (—L,L). Even when this assumption is not
warranted, the coefficients am and 6m as obtained above are called Fourier coefficients corresponding
to /(«), and the corresponding series with these values of am and bm is called the Fourier series
corresponding to /(a;). An important problem in this case is to investigate conditions under which
this series actually converges to f(x). Sufficient conditions for this convergence are the Dirichlet
conditions established below.

7.5. (a) Find the Fourier coefficients corresponding to the function

f(x) = Period = 10

(&) Write the corresponding Fourier series.
(c) How should f(x) be defined at x — —5, x = 0 and x = 5 in order that the Fourier

series will converge to f(x) for —5 a x a 5?
The graph of f(x) is shown in Fig. 7-5 below.

Fig. 7-5

(a) Period = 2L = 10 and L = 5. Choose the interval c to c + 2L as -5 to 5, so that c = -5.
Then

If
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(b) The corresponding Fourier series is

(c) Since f(x) satisfies the Dirichlet conditions, we can say that the series converges to f(x) at all

points of continuity and to — . at points of discontinuity. At x = —5, 0 and 5,

which are points of discontinuity, the series converges to (3 + 0)/2 = 3/2 as seen from the
graph. If we redefine f(x) as follows,

f(x) = Period = 10

then the series will converge to f(x) for —5 S a; S 5.

7.6. Expand f(x) = y?, 0 < x < 2* in a Fourier series if (a) the period is 2*, (b) the
period is not specified.
(a) The graph of f(x) with period 2;r is shown in Fig. 7-6 below.

Fig. 7-6

Period = 2L = 2ir and L = ir. Choosing c = 0, we have

If

Then
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This is valid for 0 < x < 2ir. At * = 0 and * = 2v the series converges to 27r2.

(5) If the period is not specified, the Fourier series cannot be determined uniquely in general.

7.7. Using the results of Problem 7.6, prove that

At x = 0 the Fourier series of Problem 7.6 reduces to

By the Dirichlet conditions, the series converges at x = 0 to

Then and so

ODD AND EVEN FUNCTIONS. HALF RANGE FOURIER SERIES
7.8. Classify each of the following functions according as they are even, odd, or neither

even nor odd.

(a) /(») = Period = 6

From Fig. 7-7 below it is seen that /(—x) = —/(«), so that the function is odd.

Fig. 7-7

(6) /(») = Period = 2*

From Fig. 7-8 below it is seen that the function is neither even nor odd.

Fig. 7-8

(c) f(x) = «(10-a;), 0 < x < 10, Period = 10.
From Fig. 7-9 below the function is seen to be even.
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7.9. Show that an even function can have no sine terms in its Fourier expansion.

Method 1.

No sine terms appear if bn = 0, n = 1,2, 3, To show this, let us write

a)
If we make the transformation x = — u in the first integral on the right of (Í), we obtain

(2)

where we have used the fact that for an even function /(—u) = /(«) and in the last step that the
dummy variable of integration u can be replaced by any other symbol, in particular x. Thus from
(1), using (2), we have

Method 2.

Assume

Then

If f(x) is even, f(—x) = f(x). Hence

and so

and no sine terms appear.
In a similar manner we can show that an odd function has no cosine terms (or constant term)

in its Fourier expansion.

7.10. If f(x) is even, show that (a) a« =

(a)

Letting x = —u,

since by definition of an even function /(—u) — f(u). Then

(6) This follows by Method 1 of Problem 7.9.

7.11. Expand f(x) = sin x, 0 < x < -a, in a Fourier cosine series.
A Fourier series consisting of cosine terms alone is obtained only for an even function. Hence

we extend the definition of f(x) so that it becomes even (dashed part of Fig. 7-10 below). With this
extension, f(x) is then defined in an interval of length 2ir. Taking the period as 2jr, we have
2L = 2n- so that L = v.
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Fig. 7-10

By Problem 7.10, bn = 0 and

For n - 1,

For n = 0,

Then

7.12. Expand f(x) = x, 0 < x < 2, in a half range (a) sine series, (b) cosine series.
(a) Extend the definition of the given function to that of the odd function of period 4 shown in

Fig. 7-11 below. This is sometimes called the odd extension of /(«). Then 2L = 4, L = 2.

Fig. 7-11

Thus an — 0 and

Then
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(&) Extend the definition of f(x) to that of the even function of period 4 shown in Fig. 7-12 below.
This is the even extension of f(x). Then 2L = 4, L = 2.

It should be noted that the given function f(x) = x, 0 < x < 2, is represented equally well
by the two different series in (a) and (6).

PARSEVAL'S IDENTITY
7.13. Assuming that the Fourier series corresponding to f(x) converges uniformly to f(x)

in (—L,L), prove Parseval's identity

where the integral is assumed to exist.

then multiplying by /(se) and integrating term

by term from — L to L (which is justified since the series is uniformly convergent) we obtain

(1)
where we have used the results

(*)

obtained from the Fourier coefficients.

The required result follows on dividing both sides of (J) by L. Parseval's identity is valid
under less restrictive conditions than that imposed here.
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7.14. (a) Write Parseval's identity corresponding to the Fourier series of Problem 7.12(6).

(&) Determine from (a) the sum S of the series jï.+ 2* + 34 + ' ' ' +^*+ "'•
4

(a) Here L = 2, ac = 2, an = -g-g (cos «"" ~ 1)> w ̂  °> 6» = °-

Then Parseval's identity becomes

7.15. Prove that for all positive integers M,

where o« and bn are the Fourier coefficients corresponding to f(x), and f(x) is assumed
piecewise continuous in (—L, L).

Let U)

For M = 1,2,3,... this is the sequence of partial sums of the Fourier series corresponding to /(«).

We have (2)

since the integrand is non-negative. Expanding the integrand, we obtain

(3)

Multiplying both sides of (1) by 2f(x) and integrating from — L to L, using equations (a) of
Problem 7.13, gives

(4)

Also, squaring (1) and integrating from —L to L, using Problem 7.3, we find

(5)

Substitution of (4) and (5) into (3) and dividing by L yields the required result.
Taking the limit as M -» », we obtain Bessel's inequality

(6)

If the equality holds, we have Parseval's identity (Problem 7.13).
We can think of SM(a;) as representing an approximation to /(*), while the left hand side of

(2), divided by 2L, represents the mean square error of the approximation. Parseval's identity
indicates that as M -» °° the mean square error approaches zero, while Bessel's inequality indicates
the possibility that this mean square error does not approach zero.

The results are connected with the idea of completeness of an orthonormal set. If, for example,
we were to leave out one or more terms in a Fourier series (say cos 4vx/L, for example) we could
never get the mean square error to approach zero no matter how many terms we took. For an
analogy with 3 dimensional vectors, see Problem 7.46.
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DIFFERENTIATION AND INTEGRATION OF FOURIER SERIES
7.16. (a) Find a Fourier series for f(x) = xz, 0 < x < 2, by integrating the series of

Problem 7.12(a). (b) Use (a) to evaluate the series
(a) From Problem 7.12(a),

(1)

Integrating both sides from 0 to a; (applying Theorem 7-2, page 184) and multiplying by 2,
we find

(*)

where

(6) To determine C in another way, note that (2) represents the Fourier cosine series for x2 in
0 < x < 2. Then since L = 2 in this case,

Then from the value of C in (a), we

7.17. Show that term by term differentiation of the series in Problem 7.12(a) is not valid.

Term by term differentiation yields 2

Since the nth term of this series does not approach 0, the series does not converge for any
value of x.

CONVERGENCE OF FOURIER SERIES

7.18. Prove that

(a) We have cos nt sin

Then summing from n = 1 to M,

sin ^t{cos í + cos 2< + • • • + cos Mt} =

On dividing by sin -Jt and adding ^, the required result follows.

(6) Integrate the result in (a) from —v to 0 and 0 to w respectively. This gives the required
results, since the integrals of all the cosine terms are zero.

7.19. Prove that is piecewise
continuous.

This follows at once from Problem 7.15, since if the series is convergent,

The result is sometimes called Riemann's theorem.

follows is conver
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7.20. Prove that is piecewise continuous.

We have

sin MX dx

Then the required result follows at once by using the result of Problem 7.19, with /(») replaced by
/(*) sin %x and /(«) cos £x respectively which are piecewise continuous if /(«) is.

The result can also be proved when the integration limits are a and b instead of —r and a-,

7.21. Assuming that L = *, i.e. that the Fourier series corresponding to f(x) has period
2L = 2ir, show that

Using the formulas for the Fourier coefficients with L = JT, we have

an cos nx + bn sin nx = sin nx

= f(u) (cos MM cos nx + sin nu sin nx) du

= /(M) cos n(u — x) du

Also,

Then

using Problem 7.18. Letting u — x = t, we have

Since the integrand has period 2ir, we can replace the interval —ir — x,ir — x by any other
interval of length 2ir, in particular — -IT, v. Thus we obtain the required result.

7.22. Prove that

From Problem 7.21,

U)

Multiplying the integrals of Problem 7.18(6) by f(x — 0) and f(x + 0) respectively,

(2)

Subtracting (S) from (Í) yields the required result.
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7.23. If f(x) and /'(«) are piecewise continuous in (—IT, *), prove that

The f u n c t i o n i s piecewise continuous in because f(x) is piecewise
continuous.

Also.

exists, since by hypothesis /'(*) is piecewise continuous so that the right hand derivative of f(x) at
each x exists.

Thus is piecewise continuous in
A

Similarly, is piecewise continuous in

Then from Problems 7.20 and 7.22, we have

ORTHOGONAL FUNCTIONS
7.24. (a) Show that the set of functions

forms an orthogonal set in the interval (—L, L).
(b) Determine the corresponding normalizing constants for the set in (a) so that the

set is orthonormal in (—L, L).

(a) This follows at once from the results of Problems 7.2 and 7.3.

(6) By Problem 7.3,

Then

Also,

Thus the required orthonormal set is given by

7.25. Let be a set of functions which are mutually orthonormal in (a,b). Prove
CO

that converges uniformly to f(x) in (a, b), then

Multiplying both sides of
(1)

by <i>m(x) and integrating from a to 6, we have
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(2)

where the interchange of integration and summation is justified by using the fact that the series
converges uniformly to /(»). Now since the functions {<t>n(x)} are mutually orthonormal in (a, 6),
we have

so that (2) becomes

(*)
as required.

We call the coefficients cm given by (S) the generalized Fourier coefficients corresponding to
/(») even though nothing may be known about the convergence of the series in (i). As in the case

o f Fourier series, convergence o f i i s then investigated using t h e coefficients (S). T h e
i

conditions of convergence depend of course on the types of orthonormal functions used.

Supplementary Problems
FOURIER SERIES

7.26. Graph each of the following functions and find their corresponding Fourier series using properties
of even and odd functions wherever applicable.

Period 4 P e r i o d 8

Period 10 Period 6

7.27. In each part of Problem 7.26, tell where the discontinuities of /(*) are located and to what value
the series converges at these discontinuities.

7.28. Expand in a Fourier series of period 8.

7.29. (a) Expand . . . , in a Fourier sine series.
(6) How should f(x) be defined at * = 0 and x = v so that the series will converge to f(x) for

OSxSvl

7.30. (a) Expand in a Fourier series f(x) = cos x, 0 < * < v if the period is v, and (6) compare with
the result of Problem 7.29, explaining the similarities and differences if any.

7.31. Expand in a series of (a) sines, (6) cosines.

7.32. Prove that for

7.33. Use Problem 7.32 to show that
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7.34. Show that

DIFFERENTIATION AND INTEGRATION OF FOURIER SERIES
7.35. (a) Show that for

(6) By integrating the result of (a), show that for —v'&x'&v,

)

(e) By integrating the result of (b), show that for — tr S x S v,

7.36. (a) Show that for

(6) Use (a) to show that for

7.37. By differentiating the result of Problem 7.32(6), prove that for 0 S x S v,

PARSEVAL'S IDENTITY
7.38. By using Problem 7.32 and Parseval's identity, show that

7.39. Show that [Hint. Use Problem 7.11.]

7.40. Show that

7.41. Show that

ORTHOGONAL FUNCTIONS

7.42. Given the functions a0, «j + a¿e, a3 + atx + asx
2 where a0 0*5 are constants. Determine the

constants so that these functions are mutually orthonormal in (—1,1) and thus obtain the functions.

7.43. Generalize Problem 7.42.

7.44. (a) Show that the functions are mutually orthonormal in (—w, v). (b) Show

how to expand a function /(») in a series of these functions and explain the connection with Fourier
series.

7.45. Let f(x) be approximated by the sum of the first M terms of an orthonormal series

where the functions <j>n(x) are orthonormal in (a, 6). (a) Show that
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(6) By interpreting

as the mean square error of SM(x) from /(») [and the square root as the root mean square or
r.m.s. error], show that Parseval's identity is equivalent to the statement that the root mean
square error approaches zero as M -» ».

(c) Show that if the root mean square error may not approach zero as M -» », then we still have
Bessel's inequality

(d) Discuss the relevance of these results to Fourier series.

7.46. Let r be any three dimensional vector. Show that

and discuss these with reference to Bessel's inequality and Parseval's identity. Compare with
Problem 7.15.

7.47. Suppose that one term in any orthonormal series [such as a Fourier series] is omitted, (a) Can we
expand a function /(«) into the series? (6) Can Parseval's identity be satisfied? (c) Can Bessel's
inequality be satisfied? Justify your answers.

7.48. Let be orthonormal in (a, b). Prove that

is a minimum when

Discuss the connection of this to (a) Fourier series and (6) Problem 7.45.

7.49. (a) Show that the functions 1,1 — x, 2 — 4» + x2 are mutually orthogonal in (0, ») with respect to
the density function e~x. (b) Obtain a mutually orthonormal set.

7.50. Give a vector interpretation to functions which are orthonormal with respect to a density or
weight function.

Answers to Supplementary Problems

7.26. (a)

<«)

7.27. ( a ) b ) n o discontinuities

7.28.

7.29.

7.30. Same answer as in Problem 7.29.

7.31.

7.27. (a)
(c)

(a)

(a)




